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Abstract. The thermodynamic and retrieval properties of the Ashkin—Teller neural network
model storing an infinite number of patterns are examined in the replica-symmetric mean-field
approximation. In particular, for linked patterns temperature-capacity phase diagrams are derived
for different values of the two-neuron and four-neuron coupling strengths. This model can be
considered as a particular non-trivial generalization of the Hopfield model and exhibits a number
of interesting new features. Some aspects of replica-symmetry breaking are discussed.

1. Introduction

The Ashkin—Teller neural network (ATNN) studied recently by us in the case of loading of
a finite number of patterns ([1] and references therein) can be considered as a non-trivial
generalization of the Hopfield model [2, 3] to allow for different types of neurons. It can be
seen as a model consisting of two Hopfield models interacting through a four-neuron term, or
it can be interpreted as a neural network with two types of neurons at each site having different
functions.

Some of the underlying neurobiological motivation for the introduction of different types
of neurons is the fact that there exist areas in the brain which react to two different kinds of
dependent stimuli in such a way that the response to particular combinations of these stimuli is
stronger than the response to others[4]. Furthermore, in neuropsychological studies onamnesia
it has become appreciated that memory is composed of multiple separate systems which can
store different types of information: e.g., information based on skills and information based on
specific facts or data [5]. In addition, the classical Ashkin—Teller model, on which our ATNN
model is based, appears in studies of disordered systems when the disorder evolves on a time
scale that can be tuned [6]. Finally, two different types of neurons show up naturally when
considering the Hopfield model with synchronous dynamics [3, 7, 8].

Storage and retrieval of embedded patterns built from these two types of neurons with
different degrees of (in)dependence have been discussed in [1] for finite loading: i.e. the
capacityw, defined as the number of embedded pattgrngersus the size of the system, is
taken to be zero. In that study we wanted to find out, e.g., whether the four-neuron interaction
between the two types of neuron can improve the retrieval process. And indeed, it has been
seen that interesting retrieval behaviour emerges, especially for linked patterns: e.g., different
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types of Mattis states occur, a higher retrieval transition temperature is possible, the quality
of retrieval is improved through a bigger overlap. Therefore, it is interesting to investigate the
properties of this model for infinite loading of patterns, i.e.,dog 0. This is the purpose of

the present paper.

After describing the ATNN model in section 2 we use the standard replica mean-field
theory approachin order to write down its free energy in section 3. Assuming replica symmetry
we then obtain the fixed-point equations for the relevant order parameters. Thermodynamic
and retrieval properties are discussed in section 4. In particular, section 4.1 investigates the
behaviour of the model at zero temperature for equal two- and four-neuron coupling strengths
in the Hamiltonian. In this case also the entropy is calculated and found to be negative. This
leads to adiscussion about the size of the replica-symmetry breaking and re-entrance behaviour.
Section 4.2 presents phase diagrams in the temperature—capacity plane for different values of
the two-and four-neuron coupling strengths. A number of new features in these diagrams show
up. Also, the maximal information content of the network is obtained as a function of these
couplings. Where relevant, the results are compared with the Hopfield model [2, 3] and with
the four-state Potts model [9—11]. Finally, section 5 presents some concluding remarks.

2. The model

We consider a network oV sites each with two different types of binary neurenando;,
i = 1,...,N. The interactions between the neurons are determined by the infinite-range
Hamiltonian
H = —% Z[Ji(jl)s,-sj + Ji(]-Z)O'iGj + .]i(J-s)S,‘SjO',‘O'j]. (1)
i#]
In this network storage and retrieval of two different types of pattegns= {£/‘} and
n; ={n{'},u =1, ..., p are enabled by a Hebb-like learning rule for the couplings

1 - 2 1 P 3 1 F . .
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N u=1 N n=1 N n=1

The patterng; andn, are supposed to be independent identically distributed random
variables taking the values +1 erl with equal probability. AllJ,, v = 1,2, 3 are non-
negative.

First, we remark that the above definitionl;ff) is equivalent to the case of linked patterns
considered in [1]. Second, we repeat that this model can be considered as an assembly of two
Hopfield models (whers = 0) interconnected via a four-neuron interaction (wkigsgz 0).

3. Replica-symmetric mean-field theory

In order to determine the thermodynamic and retrieval properties of the model we calculate
the quenched free energy per site within the replica-symmetric mean-field theory approach.
Using standard techniques [3] we arrive at
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with 8 = 1/T the inverse temperature measuring the noise level in the systdma,capacity
defined as the number of patterns per number of couplings per spin+£&p/3N and where

< 3
a, =K, mfj # +2z, _arv> 4
(Zl TRTHE. @

K, =BJ, Yy =¢&" vy =n" vy =" (5)

Here the indexy = 1, ..., ¢, ¢ finite, labels the condensed patterns, the index 1, 2, 3,
((-- )) indicates the average over the embedded patternsgnddotes the Gaussian measure
Dz, = dz, (2m)"Y?exp(—z2/2). In (3), (4) them, = {m!"} are the overlap order parameters
between the pattergh, and the network statgs}'}, theg, represent the Edwards—Anderson
(EA) order parameters with their conjugate variableghe mean-square random overlap with
the non-condensed patterns), namely

my = <<i i(s”)w» 4 = <<i XN:(<S-”>>2>> =2 3 ety
N i=1 l I N i=1 l 3o pn=c+l ’
(6)

with St = s;, S = 0;, S2 = 5,0; and wherg(- - -) denotes the thermal average.
The phase structure of the network is determined by that solution of the set of fixed-point

equations
3
tanha, + tanhas tanha,
)= Dz v 7
m f!_[:l % <<¢ 1 + tanha, tanha; tanha, >> ™
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which maximizes-8f(8). Herev, §, p = 1, 2, 3 and our convention is that they have to be
taken different in the equations above.

Solving this set of equations is a tedious task. In the following sections we discuss these
solutions that are important for the thermodynamic and retrieval properties of the model: i.e.,
Mattis retrieval states and spin glass (SG) states. At this point we remark thatinttdimit
the replica-symmetric solution of the ATNN model presented above is completely consistent
with the corresponding result obtained in [1].

4. Results

The solution of the fixed-point equations for the ATNN neural network model presented in
the previous section depends, of course, on the values of the coupling str&ngtsthout

loss of generality we puk; = K, in what follows. Such a choice is very often used in
the literature concerning classical ([12] and references therein) and SG [13] Ashkin—Teller
models. This model contains as particular limits the Hopfield network for anykiwequal to

zero, the four-state clock network [14] (or, equivalently, two independent Hopfield networks)
for any K, = 0 and a model strongly resembling the four-state Potts network [9, 10] for
K1 = K, = K3. We remark, however, that only the strength of the couplings is the same
but, in general,/(" # J? # J (cf [13]). Therefore, some details of the phase diagram
compared with those of the Potts network may be different.
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The type of solutions we are interested in, at first instance, are Mattis solutions, for which
not more than one component of each order parameteis non-zero. As in [1] we thereby
distinguish two types of Mattis states. Simple Mattis states where only the same components of

them, are non-zero, e.gmy = (m1,0,...,0), my = (m,0,...,0), m3 = (m3,0,...,0),
and crossed Mattis states where the same components a# ttere never non-zero: e.g.,
my = (m1,0,...,0), my = (0,m»,0,...,0), m3 = (0,0,m3,0,...,0). These states are

denoted bynimoms in what follows. All these Mattis retrieval solutions also have non-zero
values of the EA order parameteys. We remark that we have also found Mattis states
where only onemn, and the corresponding, are non-zero. These are, in fact, Hopfield-like
solutions. Furthermore, we are interested in SG states characterized £y0, ¢, # 0 (here
also Hopfield-like SG states are possible) and a paramagnetic state with all order parameters
m, =0,q9, =0.

First, it is worthwhile to discuss the most simple case: i.e., zero temperature with
equal coupling strengths. Second, we present results for non-zero temperatures and arbitrary
couplings.

4.1. Retrieval properties at zero temperature

Restricting ourselves first t&; = K, = K3 we find that only solutions with equal order
parametersin; = my, = mg3 andq; = g, = gz exist. Further, considering simple Mattis
states at zero temperature the set of fixed-point equations (7)—(9) can be reduced to a single
equation, as in [3]

x@z/:Dzerf<%2+2x>—/fﬁDzerf(%+2x)[1_zx\/§]+%

x /_ O:ﬁ Dz [erf2 (\% + 2x> +erf? (%)} [1— zx«/é]—x\/g 1+e2%
(10)

with the new variablec = m/~/3ar being different from zero only whem = 0. Thus the
range inx allowing the existence of non-zero solutions of equation (10) determines the critical
capacity,a.(0), of the ATNN model with equal coupling strengthsZat= 0. Numerically
solving this equation for different values@fwe finde,.(0) = 0.183 9205. This is higher than

the critical capacity of the Hopfield modet (0) = 0.137 905 566) [15, 16] and agrees (up

to numerical precision) with the result obtained in [9] for the four-state Potts neural network
after an appropriate rescaling with the number of couplings as discussed in [17]. (The relation
between the Hopfield and Potts critical capacities is given in equation (19) of [9].) We remark
that taking the coupling strengtl&s, unequal always leads to a smaller critical capacity, as we
will see in the next section.

In analogy with the Ashkin—Teller SG [13] and with the Hopfield network [3] we expect
replica symmetry to be broken for low temperatures. Consequently, we expect some re-entrant
SG behaviour (see, e.g., [18]) indicating that the true critical capacity is greater than its replica-
symmetric value al" = 0. In order to get an idea about this breaking we have calculated the
entropy of the replica-symmetric solution&t= 0, which for simple Mattis states reads

9 .
= —— — + = —
S(x) 2% [In(l 0) - c] C ﬂlinooﬁ(l q). (11)
As expected, we find that the value of this entropy is negative. In particilar(0)) =
—0.007 228 versus-0.001 445 for the Hopfield model [3}-0.003 995 for the three-state
Potts model [10] and-0.007 212 for the four-state Potts model [11]. Furthermore, this
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Figure 1. TheT—« section of the phase diagram for the ATNN model with equal coupling strengths
(w = 1). The solid curves indicate the thermodynamic transitions. The precise meaning of the
curves is described in the text.

entropy vanishes exponentially with decreasingnd, in fact, for smalkx we have that

S ~ —exp(—1/@). Inthe SG phase§ = —0.91 ata.(0) versus—0.07 for the Hopfield
model [3] and—0.13 [10] for the three-state Potts model. All this suggests that replica-
symmetry breaking of the retrieval states of the ATNN model is somewhat stronger than in the
Hopfield model but still weak compared with the SG state of the ATNN. Further details on this
matter are beyond the scope of this paper.

4.2. The phase diagram for non-zero temperatures

The phase diagram of the ATNN model is obtained by numerically solving the set of fixed-
point equations (7)—(9). It is a complicated functioniof = K>, K3, ande, the behaviour

of which we analyse by looking specifically &t sections for different values of the ratio

w = K1/K3. Furthermore, we discuss the maximal information content of the network in the
full space of couplings.

An extensive numerical analysis allows us to distinguish essentially two qualitatively
different7T—« sections of the full phase diagram. They are shown in figures 1 and 4.

Several transition curves bordering different phases show up. The cyesdT; are
related to simple Mattis solutions, the curfigseparates the SG and paramagnetic solutions.
The curved o andT,,, are connected with crossed states. Finally, the cufyesT,; and7;;
relate to the Hopfield-like retrieval and SG solutions introduced before. We remark that, from
now on, writing that a solution exists also implies that it is stable within the replica-symmetric
approximation, unless stated otherwise.

Let usfirst discuss figure 1 where the coupling strengths are all equal, anduhendein
more detail. We start by looking at highexpressed in units dt’fl = T/J1. The transition
from the disordered paramagnetic phase to the SG phase=(0, g, # 0) is continuous and
denoted byT,. When crossing the curvE, simple Mattis retrieval states show up as local
minima of the free energy. At these points the overlap with the embedded patterns jumps from
zero to a finite macroscopic value. So the system functions as an associative memory and the
critical storage capacity for a given temperature can be read off through that line.

When further lowering the simple Mattis states become global minima of the free energy.
This happens along the cur¥gand this thermodynamic transition is first order. Here we note
that the critical curveg; andT, end in different temperature pointsaat= 0 giving rise to a
‘crossover’ region for smalk as it occurs in the Potts model [10]. This is related to the fact
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Figure 2. Typical overlap profiles as a function of the temperature for simple Mattis states of the
model withw = 1 for different capacities. From bottom to top: = 0, 0.09, 0.18. The dotted
parts of the curves are unstable within replica symmetry.

that fora = 0 this ATNN model withw = 1 has a discontinuous transition Atas shown
in [1] (see, in particular, figure 5). In this crossover region the simple Mattis states (global
minima) and the paramagnetic state (local minimum) coexist.

Finally, at still lowerT (and appropriate values a) crossed states of the typenm and
mm0 exist left from the curveg,,, andT,q, respectively. Their free energy is bigger than that
of the simple Mattis states.

We end the discussion of this phase diagram by remarking that we find weak re-entrant
behaviour both at the curvds andT,,. The re-entrance at the curfgis somewhat stronger
and may suggest [19] a greater replica-symmetry breaking of the SG solution, in agreement
with the values of the zero-temperature entropy calculated in section 4.1. Furthermore, the
greatest capacity of the ATNN model with equal coupling strengths is obtained for temperature
T = 0.09 and reads&, (T = 0.09) = 0.1851.

In figures 2 and 3 we present some typical overlap profiles for simple and crossed Mattis
states in this model indicating the stability of the solutions within the replica-symmetric
approximation (i.e., indicating where the solution is a minimum of the replica-symmetric
free energy). We see that, for the same valueg ahde, the simple states always have the
largest overlap.

Next, we turn to a discussion of the phase diagram for the ATNN model with unequal
coupling strengths. We explicitly consider the situation of figure 4 where %1 (meaning
that the four-neuron term has four times the strength of the two-neuron one). Starting from
high T we first meet the (new) curvg,; marking the continuous transition from the disordered
paramagnetic phase to a SG1 phase where only one gf th@on-zero, i.e. the Hopfield-like
SG-staten, = 0,91 = g2 = 0, g3 # 0. When loweringl" and takinge sufficiently small,
the (new) curver,,; appears below which solutions with only one, and corresponding,
different from zero: i.e., Hopfield-like Mattis states exist as local minima of the free energy.
Below the thermodynamic first-order transition cufie they become global minima of the
free energy. These Hopfield phases exist in the intepval [0, 0.69]. The rest of the curves
which are present are similar to the ones of figure 1, whereby we remark that the simple Mattis
states are now of the formml. However, crossing the curvé, from within the Hopfield-
like retrieval phase we observe that the overap= m, continuously increases from zero.
Outside this regiom; = m, immediately jumps from zero to a finite macroscopic value as is
the case in figure 1. Furthermore, crossed Mattis states of thedypéave become unstable
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Figure 3. Typical overlap profiles as a function of the capacity for crossed Mattis staidsof
the model withw = 1 for different temperatures. From top to bottoi#:= 0.5, 0.55, 058, 06,
0.62, 065. The dotted parts of the curves are unstable within replica symmetry.

Figure 4. The T—« section of the phase diagram for the ATNN model with unequal coupling
strengths¢ = ;11). The solid curves indicate the thermodynamic transitions. The precise meaning
of the curves is described in the text.

for this value ofw whereas the crossed states of type0 exist for allw > 0.

Sections of the full phase diagram for different values of the ratiare qualitatively
not much different and can be explained by taking the diagram in figure luwith1 as a
reference.

Whenuw is increasing (starting at the value 1), meaning that the coupling strength of the
four-neuron interaction becomes smaller, the crossover region shrinks since the endpoints of
the curvesT, andT,, come closer. It finally shrinks to zero far = oo meaning that one is
left with two independent Hopfield models. The region where the crossed solutinfisare
found gets larger such that the curfig moves to the right until it finally coincides with the
curveT,,. The shapes of the transition curves are deforming continuously in such a way that
they resemble more and more the Hopfield model transition curves and finally they become
identical with the latter.

When decreasing from the value 1 the phase diagram shown in figure 1 evolves to the
one presented in figure 4. The gap between the cufyemdT, for o = O is increasing and
Hopfield-like phases appear. When further decreasinthe gap still grows until it reaches
the maximal value 1 in units (‘Kl‘l and the Hopfield phase occupies a larger part of the phase
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Figure 5. The maximal information content of the ATNN model as afunctiorKQfl anngl.

diagram to become completely dominating in the limit= 0 where the pure Hopfield model

is found. This means that the curv€s T,, andT; shrink and disappear as — 0 and as

a result the curves,,; andT;; become equal to the corresponding lines of the pure Hopfield
model.

Finally, in order to have an idea about the amount of information stored in the network we
have to take into account both the value of the capacity and the retrieval overlap. We follow
the approach of [20] based upon the Shannon entropy [21]. This leads straightforwardly to the
following information content per number of couplings per spin:

I(a,my) = a[ 3L +my) In(L +my) + 3(1 — my) In(L — my)]. (12)
We remark that onlyz; appears in this formula since f&; = K, we recall thatn; = m,. We
have calculated («, m;) for all « < «. and figure 5 shows its maximal valug,as a function
of K;tandKk;*. A few remarks are in order. First, we find that the maximal information
content is reached for values @fslightly smaller tharx.. Second, the greatest information,
i.e.I = 0.1576, is obtained for equal coupling strengths. Thirdufce oo we find a constant
information content independent @f which is equal to the one in the Hopfield model at zero
temperature. This Hopfield value is1213 (see [20]): i.e.,.0809 in figure 5 in view of the
rescaling with% due to the different number of couplings per spin. Finally,foe= 0 and
0< Kl‘l < 2 the critical capacity is equal to the Hopfield value and zerd(‘fp’r > 2 but the
information content is continuously going to zerolé§1 tends to 2. This is due to the fact
that the overlap:; = m, corresponding to maximal information goes continuously to zero.

5. Concluding remarks

In this paper we have studied the thermodynamic and retrieval properties of the ATNN neural
network model storing an infinite number of patterns using replica-symmetric mean-field
theory. This analysis extends our results for this model in the case of low loading [1].

We have derived the free energy and fixed-point equations for the relevant order parameters
and have obtained the phase diagram for arbitrary values of the coupling strength of the two-
and four-neuron interactions. This model can be considered as the sum of two interacting
binary networks such that it contains the Hopfield model when some of the couplings go to
zero. For equal coupling strengths this model strongly resembles the four-state Potts neural
network.

The storage capacity defined as the number of patterns per number of couplings per spin is
maximal for equal coupling strengths and equal i@81. Inthat case the maximal information
content per coupling is.0576 versus 1213 for the Hopfield model.
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Different retrieval characteristics can be distinguished in the phase diagram depending on
the parameters of the network. First, the two types of embedded patterns are retrieved and the
retrieval quality is enhanced by the interaction between the networks. These retrieval states
are the simple Mattis states. Second, the two types of embedded patterns are retrieved but with
lower precision because of the presence of this interaction. These retrieval states are the crossed
states of the type:m0 andmmm. They do not play an important role in the thermodynamics
of the model. Third, a pure Hopfield-like phase is present indicating the retrieval of only one
kind of pattern.

These results allow us to mention some possible biological applications of this model.
Patterns related with two different order parameters may be seen as a representation for two
different stimuli: e.g., two visual ones as shape and colour, or two different ones as colour
and flavour. When these two stimuli are somehow linked, e.g. through the fact that they
were experienced at the same time, it is very likely that they will be recalled together, what
corresponds to a suggestion in [4] that particular combinations of stimuli are favoured.

Finally, we remark that there is some re-entrant behaviour in the phase diagram at low
temperatures which points at replica-symmetry breaking effects. Calculation of the zero-
temperature entropy supports the expectation that this breaking is weak.

In brief, the presence of a four-neuron coupling term in the ATNN model not only enhances
the quality of pattern retrieval (by giving a larger overlap at higher temperatures), as present
already in the case of low loading [1], but it also increases the critical capacity and the maximal
information content in comparision with the Hopfield model.
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